If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+14x=13
We move all terms to the left:
x^2+14x-(13)=0
a = 1; b = 14; c = -13;
Δ = b2-4ac
Δ = 142-4·1·(-13)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{62}}{2*1}=\frac{-14-2\sqrt{62}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{62}}{2*1}=\frac{-14+2\sqrt{62}}{2} $
| -10-2(x-5)=-22 | | 3y+42+2y−53=312 | | 4+b=0.6 | | y+7,y=12 | | 3/5-4=b | | y+3(2/9)=5(2/3) | | 5x-2(3x+4)=2x+4 | | -8+13y=2 | | y+32/9=52/3 | | 4+b=3/5 | | 15x^2-30x-1800=0 | | x^2+194371=0 | | x^2+194371.784291=0 | | x-14=-37 | | -22=−77+11r | | 16=r+10 | | (6x-22)-(8x+34)=180 | | 5x-3(3x+4)=2x-5 | | -16=k-6 | | (5-i)-(3-2i)=0 | | 8x−5=6x+1 | | 3t/5=7+t/2 | | m+2m-6m=-12+2m | | 4x+20+2x+-5=0 | | 5x-(4•11)=54 | | 4x+18=2x-22 | | 1.18181818182=x/8 | | 6M+3P=100k | | 11x-2+14x-7=180 | | 50.3+2y=20 | | x=5,5x+3x2-15+2x | | 4/3x=517 |